EXPLORING IT AND PERCEIVING THE AREA OF A CIRCLE

BY KAILAASH ANANDAJOTHI

GRADE 5

TEACHER: MRS. FERNANDEZ

INTRIGUING FACTS ABOUT П

π is an irrational number. (π=3.14159265358979323846264338327950288419716939937510582097...)

 π is defined as the ratio of the circumference of the circle to the diameter.

Mathematician Archimedes of Syracuse discovered this procession of endless digits.

 π was named by William Jones in 1706 due to it being the first letter in the Greek Word perimitros, which means perimeter.

 π is disclosed anywhere there is a circle in nature such as a sinuous river.

Experimenting with $\boldsymbol{\pi}$

In this chart, I measured the circumference and diameter of some items.

ltem	Circumference	Diameter	Value of T	Radius
Таре	13.25 in	4.125 in	3.212	
Penny	2.375 in	0.75 in	3.166	
Quarter	3.125 in	l in	3.125	
Medal	8 in	2.5 in	3.2	
Lid	14.25 in	4.375 in	3.257	
Silver Coin	4 in	1.25 in	3.2	

Circumference Diameter Radius

MY SYNOPSIS

After experimenting with various items, my chart reveals that no matter what π defines the ratio between a circle's circumference and its diameter. Therefore, π = circumference / diameter.

WHY IS THE AREA OF A CIRCLE //R^2

Step 1:1 divided the circle into 36 segments.

In this experimentation, I will derive the area of a circle by transforming the circle into a rectangle.

Step 2: I rearranged the segments to form a rectangle.

MY ANALYSISTO FIND THE AREA OF A CIRCLE

Circumference

Area of a rectangle = $L \times W$ From the picture, we know that W = r and L = C/2 which'll be equal to $C = d\pi$ $2\pi r/2$.

Width of the rectangle = Radius of the circle

Area of the rectangle = $L \times W$ = $2\pi r/2 \times r$ = $\Pi r \times r$ Area of the circle = πr^2

CONCLUSION

I CONCLUDE THAT BASED ON MY CHART IT REMAINS CONSTANT FOR ANY CIRCULAR OBJECT. ADDITIONALLY, I PROVED WHY THE AREA OF A CIRCLE IS ITRA2 BY SEGMENTING A CIRCLE INTO A RECTANGLE.